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We theoretically and experimentally study the quasi-stationary thermal regime 
which arises during periodic pulsed heating by laser radiation. 

The thermophysical features of periodic-pulsed heating have been intensively studied 
in connection with the invention of lasers which operate in the periodic-pulsed regime [1-3]. 
Their promise in measuring the thermophysical properties of materials was pointed out in [4]. 
However, this goal requires knowledge of the exact solution of the variable components in 
conditions of the quasi-stationary thermal regime, that is, for large times t. The descrip- 
tion of periodic-pulsed heating in [5] neglected heat loss a from radiation at the surface of 
the sample. The solution of the problem in the interval 0 ! t ! td was reduced to the solution 
of that for a continuous heat source of intensity q0 and was constructed over the interval 
td ! t 2 tp with the use of a fictive sink of the same intensity, shifted with respect to the 
continuous source by an amount t d. Such an approach was used in [6] in an investigation of 
the initial stages of pulsed-periodic heatingwhen the number of pulses is still comparative- 
ly low. It has been shown [6-8] that the smooth part of the solution (averaged temperature) 
Eoincides with the solution of the problem of heating by continuous sources with intensity 
q = Yq0, where ~ = td/t p is the duty factor, that is, the stationary part of the solution 
is absent. 

In order to separate the stationary and oscillatory parts of the solution in the condi- 
tions established in the quasi-stationary regime, it is necessary to account for heat loss 
from the surface of the sample [4, 9]. Moreover, the temperature pulsations which arise dur- 
ing the action of periodic pulses, unlike those arising from single pulses, propagate with 
a finite speed determined by the propagation speed of the temperature wave with the frequency 
of the fundamental harmonic m = 2~/tp. For this reason, the method of computing the pulsa- 
tions [5] at large times may not be completely reliable. With this in mind, the goal of this 
work is to study the quasi-stationary state of the temperature field T(t, x) = T(x) + u(t, 
x), lul/T << i, which arises during periodic pulsed heating by surface heat sources, with 
linearized heat losses by radiation from the sample surface: 

.... ~ - - -  + ~ . . . .  q <-  q (t) ,  
ax !.- o 

where ~ :..= 4as. T~ (0); # =-~: a s  [ff~ (0) --- T~] ..... ) ~ s  (0). 

It has been shown that the function ui(t) = u(t, 0) admits the representation ui(t) = 8 i 
(t) + v i (t), where 8i(t) is the oscillatory regime with the same frequency spectrum as that 
of the heat source q(t). The vi(t) is residual terms tending to zero for t + ~. Since the 
linearization procedure is approximate, an experimental verification of the adequacy of the 
proposed mathematical model for a realistic heating process was conducted. This model was 
developed for the case of periodic pulsed Gaussian heat source. 

To obtain the computational formulae, we study the oscillatory regime in a linear mod- 
el: 

au 

Ot 
02U = a ~ ;  u=u(t ,  x); O.<.~2x< oo; O . .~> t<  eo, 
Ox 2 

u(O, x)=O; u(t, oo)=0,  

OUox -5 au) {~=:o = q-(t); q ( t ) = -  q - +  q (t); q(t)=Al(t).  

(i) 
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The function q(t) is assumed to be piecewise smooth with period tp. We find a solution for an 
established quasi-stationary_thermal regime, that is, an asymptote of the function u1(t) = u(t, 
0) for t + ~. We denote by c k and c k the Fourier coefficients of the functions q(t) and q(t) 
in terms of the system {exp(i2akl/~)} on the interval 0 2 t 2 tp. Clearly 

tp 
_ _ 

c~ . . . . .  q + c0; ch = ch =~ t -1 (T)exp(i~h~)d~ 
P q (2 )  

0 

(o)h = : 2 ~ k / ~ ;  k,=/=l). 

Also, let q(p) be the transform of the original ~(t).q(t), where D(t) is the Heaviside step 
function. By using the operational calculus, we obtain a representation of u~(t) from (i) with 
the help of the contour integral: 

D --1/'~ n~ exp(pt) q(p)dp ( p 0 > 0 ;  [x=~z2/D), 

i 
3/ '~ ,=  ] / [ ~ e x p  {-~-argp] ' pEG:largpl<~.  

A c c o r d i n g  t o  t h e  f o r m u l a  f o r  t r a n s f o r m i n g  t h e  p e r i o d i c  o r i g i n a l  and u s i n g  ( 2 ) ,  we o b t a i n  

(3) 

((p) =F(p)[l__exp( . ._ptp)t_x= ' Co ~ . ~  c~ 
P o p -  i~')k ' 

tp 
F (p) = (q(~) exp (--  p~) de. 

(4) 

From (3) and (4) we find: 

0 

u, (t) == e~ (0 ' Co:'O: + Vl (t), 

~- ,, exp (pt) 
01 (t) = D--l. ,'~ 7. ~es ~_---7--- $(P)' 

f (~)d~ ; / (o) == D-~"*~F(--<) 
] /~-exp (~t) .~ (~ -- ~) [1 - -  exp (otp)l 

(5) 

It is evident that at o = 0 the function f(o) has a removable singularity. From this and di- 
rectly from the expression for vl(t) , we conclude that vi(t) = O(i) (t + ~). Further, by com- 
puting the residue, we have 

u, (t) = 0,  (t) § c o / ~  + 0 (1), 

0 i (t) == 2 E L2'!XP- (io}ht) _2 %~t~e ACexp (io)lr 

h~=l 

(6) 

(7) 

Here h = ~-i -V-~D; 0) - 2~!'tp 

Now, the condition that the limiting quasi-stationary regime described by u(t, x) exists 
leads to 

t.p 

0 

We introduce an expression for the oscillatory regime %i(t) in the case when the heat 
flux density q(t) has the form: 

q ( 0 =  / q~ 0 < t < t d ,  q (t + % )  -= q (t); 
[0, t o < t < t  p, v = l ,  2 . . . .  
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Using this definition we find from (2) the Fourier coefficients: 

Co = - -  q q- ?qo ('r 

ck = ch = qo exp ( - -  i~h) 
~R 

= t d t p ) ,  

(k 4 :  O, ~;k = ~k't). 

m 

Substituting the values c k = c k for k ~ 0 into (7), after transforming we obtain 

O~ (t) = ..20o -2 ,-t~ (h) sin ((,)ht + %), Oo = __qo ; (8.) 
h ~ l  

A ~ ( h ) = ~ - l i l - - h l , / ~ , ~ + k h ~ ) - - l J ~ s i n l l ' k ;  q%=arc tg (1  @h-l(le/2)-I/2)--g'h C a r r y i n g  o u t  s i m i l a r  o p e r a -  
t i o n s  for x ~ 0, we have 

0 (t, x) .... 200.. "~A~(h) X exp ( - - x q / ( % : i a )  sin (c%t + ~p~ -x]/-o~,d2a ). (9 )  
h=q 

Formula (9) represents the solution to the problem of heating by a periodic pulsed heat 
source in the form of a linear superposition of temperature waves of frequency m k = 2~/tp. 
The propagation speed of the temperature pulsation is bounded and does not exceed the propaga- 
tion speed of the fundamental-frequency temperature wave: v=~ a0.~ . With increasing dis- 
tance x from the sample surface, the high-frequency harmonics are suppressed and the heating 
becomes nearly sinusoidal. Figure i illustrates the difference in the described forms of 
temperature pulsations with the approach used in [5] (broken curve) and that developed here 
(solid curve). The pulsation form el(t) at the surface of a tungsten sample are shown, com- 
puted using (8) and the formula given in [5, i0] for three values of y: 0.2, 0.5, and 0.8. 
The mean temperature was taken as T = 1600 K, and the pulse repetition period as i00 gsec. 
We used data from [ii] for values of the thermophysical constants. It is clear that for 

< 0.2, both approaches give similar results for the heating stage. In this case the temp- 
erature change coincides with that computed for the action of a single pulse 

O~ (t) = 2qo | ~  (0 ~ t ~ t4). ( 10 ) 

In the heating stage, the discrepancy between the solid and dashed curves increases with 
increasing y. On the other hand, during the cooling stage t d < t < tp, the difference be- 
tween the values of 0a(t) decreases with increasing ~. In the case considered here, heat loss 
does not exceed 1%, the parameter h >> i and when computing the form of the temperature pul- 
sation we can set 

Ah(h) "-' sin ~'~jk (~%D; ~h ~ - -  - -  %, (ii) 
4 

that is, the form of the pulsation for both computational methods is virtually independent 
of temperature. It follows that the discrepancy in the curves in Fig. i is due to differences 
in the approach to computing 0(t, x). 

In connection with this, the question arises of the criteria for the transition of per- 
iodic heating (curves 2, 3) to periodic pulses whose temperature in the heating stage coin- 
cites with that calculated by (i0) (curve i). For this, using (8) and (Ii) we write an expres- 
sion for the amplitude of the k-th harmonic: 

Ok ~ 2qo sin ~t~/rck ~ohD. ( 12 ) 

This makes obvious the role of the thermophysical property (the coefficient of thermal activ- 
ity) during periodic pulsed heating: through it the connection between pulses and waves char- 
acterizing the heating process is established. Indeed, by equating the values of D in (i0) 
and (12) we obtain 

Ou (k~@ '2 sin - '%) --= 0~ (a@-I /~ ,  ( 13 ) 

which for ~ << I takes the form 

Ok ~ (% ~ ) k  --~/2. (14) 
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Fig. 1 Fig. 2 

Fig. i. Dependence of the normalized form of the temperature pul- 
sation on the duty factor ~ for two computational methods: solid 
curves correspond to the representation of 0(t) as a superposition 
of temperature oscillations; the dashed curves were constructed from 
the solution for pulsed heat sources. Curves i, 2, 3 are for 7 = 
0.2, 0.5, 0.8, respectively, t is in sec. 

Fig. 2. Form of the temperature pulsation_which arises during per- 
iodic pulsed heating by laser radiation. T = 1600 K; t d = 1.6 
~sec; tp = i00 Dsec; material is tungsten, mThe heating stage is shown 
in the upper corner. (i) theoretical curve; (2) experimental; dashed 
curve (3) corresponds to single pulse heating. 0 is in K, t is in 
psec. 

Expressions (13) and (14) can be considered as criteria for the establishment of the periodic 
pulsed heating regime. Here 0 a = 01(t d) is the amplitude of the temperature pulsations. 

To verify the suitability of the mathematical model (7) for realistic heating proces- 
ses, we performed an experimental study of the quasi-stationary thermal regime which arises 
when a tungsten sample is heated by radiation from an IAG laser LTI-502. The experimental 
procedure did not differ from that described in [9]. The duration and repetition frequency 
of the laser-generated pulses was 1.6 ~sec and i0 kHz, the average radiated power 8.6 W, and 
the diameter of the heating spot was 500 ~m. This work regime heated the sample to a mean 
temperature Tm = 1600 K and produced a pulsation amplitude of 0 a = 29.6 K. From Fig. 2 it 
is evident that during the heating stage, the form of the pulsation obtained experimentally 
(curve 2) coincides with that calculated from (i0) (curve 3). The difference between the 
theoretical (curve i) and experimental relations during the cooling stage is connected with 
the approximations used when linearizing the original problem. 

Figure 3 shows the values of e k obtained by expanding the experimental dependence 81(t) 
in a Fourier series in terms of the frequencies mk = 2~k/tp. Since ~ = 1.6.i0 -2 << I! the 
dependence of the amplitude of the harmonic on its number must be recitifed in 8k, k-~ co- 
ordinates, with the tangent of the angle of inclination proportional to the pulsation ampli- 
tude. It is clear that (14) is indeed fulfilled, and the graphically determined pulsation 
amplitude of 0 a = 31.1 K with ~5% error coincides with that measured experimentally. Thus, 
for periodic pulsed heating, the form of the pulsation may be completely reconstructed in 
terms of the characteristic amplitude. 

We will touch on the question of the kinetics of the approach to the quasistationary 
thermal regime and the duration of the transition process. A~ an example, Fig. 4 shows the 
time dependence of the mean temperature in the heating spot T(t) during establishment of the 
described quasi-stationary thermal regime of T m = 1600 K. Clearly, the approach to the quasi- 
stationary regime takes place in_three stages. In the first stage 0 < t < 0.2t~, the mean 
temperature in the heating spot T(t) - T o grows proportionally to V~,-and-in thls case the 
form of the pulsation is well described within the framework of the linear model [6, i0]. 
Here tq = 6.3.102 sec is the approach time to the quasi-stationary regime. The linearization 
method considered in this work corresponds to the third heating stage 0.7tq ~ t ! tq. In this 
stage, the difference between the stationary and mean temperature in the heating spot T m - 
T(t) decreases as t -3/2, and 01(t) is described by (8). In the second stage of the heating 
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0.2tq < t < 0.7tq, heat loss is nonnegligible and cannot be linearized, so to find the pulsa- 
tion form,~one must know the solution to the thermal conductivity equation: with nonlinear 
boundary conditions. 

We will show that the proposed method allows us to study the quasi-stationary thermal 
regime in the general case, when the distribution of the absorbed power density along the 
surface z = 0 has the form [12] 

/ x 2 § y2 
Q(t, x, g ) = q ( t ) e x p (  

I n i t i a l  s t a g e  o f  h e a t i n g  was e x a m i n e d  i n  [ 8 ]  i n  c o n n e c t i o n  w i t h  an  e s t i m a t e  o f  t h e  i n -  
f l u e n c e  of the bunched pulse structure of lasers operating in the free generation regime on 
the mean heating spot temperature T(t). For simplicity, we limit the discussion to square 
pulse forms. We write the system modeling the thermal process in dimensionless form 

O0 020 OaO 020 0 = 0 0:, x,  y ,  z), a-;= + 

(0-~176 / / 
, Oz, F-o 2a 2 ' 

T~0; _oo<E<oo; - -oo<~<oo;  )-~0, 

where 

Let 

x = x.,'lo; g =  y/lo; z =  Z/lo; ~ = r / l o ;  T = mot; o)o = a,laz; to = 1 / ~ .  

O(p, ~, ~1, z ) =  i d ~ [ [ O ( T ,  x, y, z) e x p ( - - p ~ - - i ~ . - ~ - - i q g ) d x d g .  

Then 

0 = c (,a) exp ( - -  Fz); F = (~2 q_ ~2 _k p)' /-~ 

The coefficient c(~) is found from the boundary condition 

c ( u ) =  l + V ~ a + n 2 + p  ' , 

Using the inverse formulas, we write the solution in the form 

Here 

= -  dp (p) exp(p~) • ~ ( -V~-+  ~l~-)exp(i~x+ i@) d~d~l!,(po> 0). 
2hi  " 4n? , " 

po- -~  , _ _ ~  

and by the transform formula of the periodic original 

-- 1 q~ - -  (q~ -1- q~) exp ( - -  1~ptp) _h q~ exp ( - -  ptp) q (p) = , , 
p 1 - -  exp (m ptp) 

qo = ql + q2; q2 = q!?/(1 - - y ) .  

Transforming the inner integral and computing the residue, we finally obtain the asymp- 
tote to the solution for t + 

] i pZo (pVx~ + ~ )  A (p, z) d,o, 0(r x, y, z ) = - f ~  o 
(15) 

where 
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Fig. 3. Rectification of the dependence of the amplitude of harmon- 
1 2 

ic 0 k on number k in Ok, k- / coordinates: the numbers 1-6 corres- 
pond to the harmonic number. 

Fig. 4. Kinetics of the approach of the me_an temperature in the 
heating spot T(t) to the stationary value T m = 1600 K: area i) ini- 
tial heating stage; 2) transition stage; 3) stage of establishment 
of quasi-stationary thermal regime. The initial temperature is 
T~ = 297 K; t d = 1.6 psec; tp = i00 psec; material is tungsten. 
is in K. 

A(p,  z) 200 s i n % R e  - - -  = : = - -  r  
1 __ ] /~o}~-v p ~ }; 

10(pV~+~z ) is the zeroth order Bessel function of the first type; ~'~i~-~0~/%; p ==}/~+~]~ 

Analysis of (15) by computer shows that as in the one-dimensional case, the coincidence 
of the pulsation form with that computed from the pulsed representation [8] is observed only 
for ~ ~ 7cr in the heating stage. The value of 7cr for which coincidence is still observed 
lies in the range 0.05 ~ 7cr ! 0.2. Here the upper bound corresponds to o + ~, where the iso- 
therms are flat, the lower bound to o z 0, where isotherms have spherical symmetry. 

Thus we have worked out a method for computing the quasi-stationary thermal regime 
which arises during periodic pulsed heating, based on a representation of the temperature pul- 
sations as a superposition of temperature waves. We have shown that there is satisfactory agree- 
ment between the proposed mathematical model and a realistic heating process. 

NOTATION 

T, temperature; ~ and 8, mean value and the oscillatory component of the temperature; 
a and X, thermal diffusivity and theraml conductivity coefficients; D = ~Cpp, square of the 
thermal activity; a, coefficient of heat loss; A, the absorbance; I and q, intensity and ab- 
sorbing power density of the laser radiation; q0, heat flux density in a pulse; t d and tp, 
length and repetition period of the laser generation pulses. 
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USE OF SENSITIVITY FUNCTIONS IN THE PROBLEM OF DESIGNING 

A MULTILAYER HEAT SHIELD 

A. Yu. Bushev and V. V. Gorskii UDC 519.2:536.212.3 

An approach is proposed for solving the problem of designing a multilayer heat 
shield with a prescribed structure from the restrictions on its temperature. 

The solution of a problem of the form 

n ( 1 ) 
M = ~Pvar, ihvar,]  ~ rain, 

/=1 hvar 

Ycon,i~Tco,l~, i =  1, m, (2 )  

hvar , /~hva r , j  ( 3 )  

g ives  the  w e i g h t e d - o p t i m a l  s o l u t i o n  of  the  problem of  des ign ing  a one -d imens iona l  m u l t i l a y -  
e red  c o n s t r u c t i o n  ( p a c k e t )  of  a p r e s c r i b e d  s t r u c t u r e ,  which i s  exposed to  a h i g h - t e m p e r a t u r e  
medium and i s  c h a r a c t e r i z e d  by r e s t r i c t i o n s  on the  t empera tu re  in s e p a r a t e  zones of  the  s t r u c -  
t u r e .  The t empera tu re  in the  packe t  i s  d e s c r i b e d  by the  one -d imens iona l  F o u r i e r  equa t i on  [1] 

OT 0 (%(T)  O_~_T]. (4) 
pc (T) O--7 = O--[f \ oy j 

With the help of the method of the penalty functions [2] the starting problem (1)-(3) 
can be reduced to an unconditional-minimization problem 

F =  Pv~,jhvar,i + ~,.~ai max (0, Tco.,t-- Teen,i) + ~ b j  max (0, hvar, i - -  hvar,i)-+min._ (5)  
]=1 i--I 1=1 hvar 

The difficulties arising in the development of methods for solving problems of this kind 
are discussed in [3, 4]. However, these methods are not widely employed for investigating 
practical design q~estions. A simplified approach to the synthesis of structures, based on 
finding the combination ofthicknesses of m separate layers such that conditions of the type 

% ( h w r , j  . . . .  , !hv ...... } = T ..... i(hwr,l, -.., h . . . . .  ) - -Tcon , i  = 0, i = ' l ,  m ( 6 )  

are satisfied, i s  employed much more often. 

The present paper is devoted to methodological questions concerning the construction of 
the solution to problems of the type formulated above. 

One possible algorithm for solving the problem (6) by iteration consists of the follow- 
ing sequence of operations which are performed at each k-th iteration: 

formation of the initial approximation h (k) (j = i, m) for the unknown thicknesses of 
var,j 

the layers; 
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